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The material properties of tissues and their mechanical state is an important factor

in development, disease, regenerative medicine and tissue engineering. Here we

describe amicrorheological measurement technique utilizing aggregates of microinjected

ferromagnetic nickel particles to probe the viscoelastic properties of embryonic tissues.

Quail embryos were cultured in a plastic incubator chamber located at the center of two

pairs of crossed electromagnets. We found a pronounced viscoelastic behavior within

the ECM-rich region separating the mesoderm and endoderm in Hamburger Hamilton

stage 10 quail embryos, consistent with a Zener (standard generalized solid) model. The

viscoelastic response is about 45% of the total response, with a characteristic relaxation

time of 1.3 s.

Keywords: ECM, quail embryo, microrheology, elasticity, Young’s modulus, Zener solid, magnetic, nanorods

1. INTRODUCTION

Tissues are physical bodies, thus their formation necessarily involves controlled generation and
relaxation of mechanical stresses (Preziosi et al., 2010). Tissue cells are known to generate
mechanical stresses by actin-myosin contractility, specifically relying on non-muscle Myosin II,
with upstream regulators coordinated through a spatial and temporal activity of rho GTPases such
as RhoA (Ridley et al., 2003). The relaxation of mechanical stresses involves the disruption of cell-
cell connections, often accompanied by changes in cell neighbors (Forgacs et al., 1998; Smutny
et al., 2017; Petridou et al., 2019). While this process is less understood on the molecular level than
acto-myosin contractility, the spatio-temporal regulation for both force generation and relaxation
are equally important to shape the embryonic tissues. Embryonic tissues are thus plastic, with their
stress-free shapes deforming through the development process.

A cell-resolved mechanism underlying tissue plasticity was first resolved in flies, where studies
indicated a pulsatile, ratchet-like contraction mechanism (Martin et al., 2009). Thus, instead of
a uniformly distributed contractile activity across the tissue, individual cells were observed to
undergo (asynchronously) a repeating cycle of contraction, stiffening and relaxation by cytoskeletal
rearrangements. The pulsatile nature of tissuemovements is also evident in the ECMdisplacements
recorded within avian embryos (Szabó et al., 2011).

While measures for tissue deformation (strain) became recently possible to obtain during
development (Rozbicki et al., 2015), estimates for tissue stress and material properties are still
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very challenging to determine. A FRET-based molecular sensor
has been recently developed (Meng and Sachs, 2011) and used
to measure tension in vivo (Cai et al., 2014), however its
applicability in living tissues is still controversial (Eder et al.,
2017). Instead, estimates of mechanical stress within tissues
rely on mechanical perturbations (Hutson et al., 2003; Varner
et al., 2010; Varner and Taber, 2012; Aleksandrova et al., 2015).
In such experiments an introduced discontinuity alters the
local mechanical balance of the tissue. As the tissue deforms
to obtain a new mechanical equilibrium, this response can
be recorded and evaluated. While precise stress measurements
would require detailed knowledge about the spatial distribution
of material parameters, such data are usually not available.
Instead, the existence of tension or compression is deduced from
the equilibrium shape of the wound (Varner et al., 2010); the
wound opens up more if the stress component perpendicular to
the cut is tensile.

The biophysical tool set measuring embryonic tissue rheology,
however, is growing together with the interest to determine the
material properties of the tissue (Petridou and Heisenberg, 2019).
Microrheology, an especially promising approach, involves the
analysis of the motion of colloidal tracer particles that are
embedded into the sample of interest. The motion can be either
a Brownian motion as in passive microrheology (Mason et al.,
1997; Crocker et al., 2000; Baker et al., 2009), or driven by
external forces as in active microrheology (Mizuno et al., 2008;
Waigh, 2016; Vaclaw et al., 2018). These approaches can yield
information on the local micro-mechanical properties (both
viscous and elastic) of complex biopolymer networks like actin
filaments, microtubules or intermediate filaments—both in vitro,
and in live cells (Chen et al., 2010; Celedon et al., 2011; Nishizawa
et al., 2017). The application of microrheology to extracellular
matrix (ECM) materials has been rather limited so far (Waigh,
2016) and to the best of our knowledge has not been used to
study the mechanical properties of cell-ECM assemblies that are
of our interest. Yet, the ability to deduce the material properties
prevalent in a microenvironment comparable with the size of
the utilized probe, presents microrheology as a logical tool to
explore tissues within a developing organism such as described
in this study.

2. METHODS

2.1. Nanorod Preparation
Nanorods 3 µm long and 300 nm in diameter were synthesized
by electrochemical deposition of nickel into alumina templates
as described previously (Paxton et al., 2004; Dhar et al., 2010;
Ghazvini et al., 2015). The magnetized nickel nanorods were
dispersed in a 90% isopropyl alcohol, 10% water solution.

2.2. Microrheology
For magnetic microrheology we have custom built
electromagnets (Figure 1A) using 5 inches long iron cores
(Ed Fagan Inc., alloy 79, 0.750′′ diameter) wrapped around with
multiple layers of magnet wire (Tech Fixx Inc., 22 awg).

The theory of elasticity measurement follows (Wilhelm et al.,
2002; Celedon et al., 2011). Let φ and θ denote the direction of

the magnetic moment of the particle and the external field in the
xy plane, respectively. The torque Tmagnetic of the magnetic field
B0 acting on a particle with magnetizationm is

Tmagnetic = mB0 sin(θ − φ). (1)

Within an elastic material, the torque Telastic resisting the rotation
of the particle in the x-y plane is

Telastic = −µf (φ − φ0) (2)

where µ = E/[2(1 + ν)] is the shear modulus, f =
πℓ3/[3 ln(ℓ/4r)] is a geometric factor and φ0 denotes the
particle’s direction in the absence of external forces or fields
(Wilhelm et al., 2002; Celedon et al., 2011). Similarly, the torque
associated with a viscous drag is

Tvisc = −ηf φ̇ (3)

where η is the viscosity, and φ̇ is the angular velocity of
the nanorod.

In the Kelvin-representation of the standard linear solid (SLS),
an elastic and a Kelvin-Voigt material are in series: the short
term response is hence elastic, followed by a slower viscoelastic
relaxation to a new elastic equilibrium. In this approximation the
rotation of thematerial1φ = φ−φ0 is decomposed into the sum
1φ = φ1+φ2, where the terms indicate the initial elastic and the
subsequent viscoelastic responses, respectively. Thus, the torque
balance for a magnetic particle embedded in an SLS material is

Tmagnetic = µ1fφ1 = µ2fφ2 + ηf φ̇2 (4)

For small deformations 1φ ≪ 1, we approximate Tmagnetic as a
Taylor series:

Tmagnetic = mB0 sin(θ − φ0)−mB0 cos(θ − φ0)1φ + ... (5)

Unless φ0 and θ are parallel, | sin(θ−φ0)|≫| cos(θ−φ0)1φ|, thus
Tmagnetic remains a constant during small deformations. Under
such conditions, the solutions of Equation (4) are:

φ1 =
Tmagnetic

µ1f
(6)

and

φ2 = A[1− exp(−t/τ )] (7)

where A = Tmagnetic/(µ2f ) and the characteristic relaxation
time is

τ = η/µ2. (8)

In the steady state elastic torques resists all the externally imposed
Tmagnetic in the Kelvin-Voigt unit, hence

Tmagnetic = µ2fφ
max
2 . (9)

Thus, the ratio of the viscoelastic and pure elastic response is
obtained as

φ1

φmax
2

=
µ2

µ1
. (10)
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FIGURE 1 | Experimental setup to measure viscoelastic properties of embryonic tissues. (A) CAD drawing showing four electromagnets and a 3D-printed incubator

chamber in the center. (B) The incubator is heated by ITO coated glass windows at the top and bottom of the chamber. (C) The measured magnetic field as a function

of the voltage across the electromagnets. Red and Blue symbols indicate measured values at the center of the incubation chamber and in the proximity of an iron

core, respectively. (D) Spatial profile of the magnetic field, measured at U = 20V. (E) Schematic of measurement: HH Stage 4 quail embryos are microinjected with

ferromagnetic nanorod aggregates. After an overnight incubation the specimen is placed between the electromagnets. Switching the magnetic fields on and off exerts

a torque on the aggregate. Its rotation and that of the adjacent tissue is recorded by live imaging. Angle of rotation, as a function of time, was extracted using a

Particle Image Velocimetry (PIV) method. The rotation response is evaluated in terms of a standard linear solid model, as described in the text.
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2.3. Embryo Culture
Fertile wild type quail (Coturnix coturnix japonica) eggs (Ozark
Egg Co., Stover, MO) were incubated for varying periods of time
(from 20 to 36 h) at 37◦C to reach Hamburger and Hamilton
(HH) stage 4 (Hamburger and Hamilton, 1951). Embryos were
then isolated, injected and cultured as in (Aleksandrova et al.,
2015), modified from (Chapman et al., 2001) to reach HH10
when they were subjected to experimental analysis.

2.4. Microinjection and ECM Labeling
Monoclonal antibodies directed against fibrillin-2 and
fibronectin ECM proteins (JB3, B3D6; DSHB, Iowa City,
IA) were directly conjugated to AlexaFluor 488, 555, or 647
(Molecular Probes) according to the manufacturer’s instructions
(Czirok et al., 2006). The direct conjugates were injected into
the lateral plate mesoderm as 5–40 nl boluses using a PLI-100
(Harvard Instruments) microinjector as described in Little and
Drake (2000). Microinjections were performed 30–60 min prior
to the beginning of the image acquisition to allow for antibody
diffusion and antigen binding.

2.5. Preparation of Transverse Plastic
Sections
The embryos were dehydrated through graded ethanol series,
placed in acrylamide containing infiltration solution for an hour
under vacuum, and embedded in an acrylamide-agarose resin.
Subsequently, 100 um sections were cut using a vibratome
(Germroth et al., 1995).

2.6. Microscopy
Microrheological measurements were performed on the powered
stage of a dissecting microscope (Leica M205FA) equipped with
epifluorescence illumination and a Planapo 2.0x objective. The
imaging system recorded 1,392 × 1,040 pixel images at a rate of
15.44 frames/s and at a resolution of 0.4 µm /pixel.

2.7. Optical Flow-Based Analysis of Local
Tissue Rotation
To characterize tissue deformation, we first apply our non-
invasive, optical flow-based method described in Czirok et al.
(2017) for each image of the recording. The displacement field
Eu(t, Ex), calculated relative to the first image as a reference,
provides the basis to calculate local tissue rotation. We
approximate the local vorticity as

|∇ × Eu(t, Ex)| =
∂uy

∂x
−

∂ux

∂y

≈
uy(x+ h, y)− uy(x− h, y)− ux(x, y+ h)+ ux(x, y− h)

2h
(11)

where h is the resolution of the optical flow-derived grid.

3. RESULTS

3.1. Magnetic Microrheometer
To facilitate microrheology measurements in live embryos, we
built a plastic incubator chamber surrounded by two, orthogonal

pairs of electromagnets (Figure 1). The plastic construction of
the incubator chamber minimizes perturbations of the magnetic
field. The incubator chamber consists of two heated indium
tin oxide (ITO) glass surfaces that enclose a 35mm dish
(Figures 1A,B). In the dish a 3D-printed ring (Gulyas et al., 2018)
delineates an inner chamber, filled by low melting point agarose,
while the outer chamber is filled with sterile distilled water
to provide humidity. Temperature was controlled by heating
currents within the ITO surfaces, feedback was provided by a
thermometer probe immersed in the water bath surrounding the
agarose bed. Quail embryos were cultured at the surface of the
agarose bed.

The magnetic field within the incubator chamber could be
gradually adjusted up to a value of 30 mT by setting the
voltage across the electromagnets (Figure 1C). The approximate
Helmholtz pair-like configuration of the electromagnets was
designed to provide a spatial homogeneous magnetic field.
According to ourmeasurements, within a 10mmdiameter region
around the symmetry center the magnetic field changes less than
5% (Figure 1D).

3.2. Microinjection of Ferromagnetic Nickel
Nanorod Probes
To measure the material properties of embryonic tissues, we
microinjected ferromagnetic nanorods into HH stage 4 quail
embryos. In the confined space of the injector capillary, the
particles formed aggregates, which incorporated into the tissue,
and were detectable by transmitted light microscopy for the
entire length of ex ovo development (Figures 2A,B). The
aggregates also appear as dark areas against the background of
ECM immunofluorescence (Figure 2C). As subsequent physical
sectioning of the microinjected embryos revealed, most nanorod
aggregates were delivered into the ECM rich space separating the
mesoderm and the endoderm (Figure 2D).

3.3. Tissue Deformation Forced by External
Fields
Microrheological recordings were performed in HH10
embryos—by which time the injury associated with
microinjection completely healed. As high framerate transmitted
light live imaging reveals, alternating magnetic fields readily
induce rotation of the embedded aggregates, accompanied
by a profound deformation of the surrounding tissue
microenvironment (Figure 3, Supplementary Movie 1).
The deformation of the ECM was established by live
imaging of fibronectin and fibrillin immunofluorescence
(Supplementary Movie 2, Figure 2C). As kymogrphs
demonstrate by visualizing movement along the perimeter
of a 50 µm radius circle centered at an aggregate, the external
force-induced deformation of the ECM and the tissue was similar
both in magnitude and timing (Figures 3B,C).

To quantify the tissue deformations induced by the rotation
of ferromagnetic aggregates, we modified our image analysis
tools used to characterize cardiomyocyte beating activity (Czirok
et al., 2017). We compared a sequence of images to a common
reference frame by PIV analysis, yielding a displacement field
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FIGURE 2 | Microinjected ferromagnetic rod aggregates in quail embryos. (A,B) An embryo, microinjected with ferromagnetic aggregates at HH stage 4 and healed

during an overnight incubation (shown at HH stage 7). Scale bars indicate 100 µm, white arrows point to the same aggregate. (C) The ECM microenvironment is

visualized by fluorescently labeled antibodies (JB3 anti-fibrillin, B3D6 anti-fibronectin mixture) microinjected into the extracellular space. (D) A 100 µm thick transverse

cross section of the same embryo locates the aggregate between the endoderm and the lateral plate mesoderm.

(u). The time-dependent spatial average of u indicates a gradually
increasing baseline, upon which the magnetic field-induced
changes are superimposed (Figure 4A). The increasing baseline
reflects deformations intrinsic to the developing tissue.

Tissue rotation was specifically characterized by calculating
vorticity (Figure 4C), the amount of local spinning motion that
would be seen by a local observer moving with the tissue.
The overall rotation was established based on Stokes’ theorem:
the sum total of vorticity within an area gives the amount of
circulation along the perimeter. Thus, by calculating the sum of
vorticity over circles of various sizes, we can determine the spatial
extent of the tissue deformation as well as the magnitude of the
rotation (Figure 4B).

While we do not know the net magnetic moment of the
aggregates, the temporal behavior of tissue rotation allows the
characterization of the local viscoelastic response of the tissue
using Equations (7) and (8). As Figure 4B shows, the response
of the tissue is biphasic: a very fast (less than 0.2 s) adjustment
is followed by a slow, creep-like behavior lasting for several
seconds. As a quantitative measure of the response, we fitted an
exponential function

φ(t) = a exp(−t/τ )+ φ∞ (12)

to each of the recorded responses—both in the creep and
relaxation phases—and then transformed the data so that the
asymptotic value φ∞ was shifted to zero. The average time-
dependent difference from the estimated equilibrium value
|φ(t) − φ∞| indeed validates the presence of a slow, exponential
relaxation with a characteristic time of 1.3±0.2 s (Figures 4D,E).
The presence of a faster and a slower response thus suggest that

the ECM-containing early embryonic tissue is well-described as
a Zener material (Mainardi and Spada, 2011), represented with
a spring in series with a Kelvin-Voigt unit (Figure 4D inset). By
fitting the Zener model to data extracted from HH10 embryos
(n = 4) we calculated µ2/µ1 = 0.45 ± 0.1 and found that the
ratio of the viscoelastic and pure elastic response is 45:55%.

4. DISCUSSION

Compression of cell aggregates yielded the first insight into
the viscoelastic properties of cell assemblies (Forgacs et al.,
1998; Khalilgharibi et al., 2016). These studies established a
biphasic elastoplastic response: when aggregates are compressed,
there is an initial reversible elastic deformation. When the
compressed state is sustained, the forces required to maintain the
deformation diminish. For most cell types the force relaxation
exhibits an initial fast decay with a characteristic time of around
2 s. This initial decay is followed by a slower exponential
process with a characteristic time of 20 s. This late stage
process involves a plastic change of the stress free shape of
the aggregate: when the external compression is removed, the
aggregates did not return to their initial spherical shape for
almost a day. The plastic deformation is accompanied by
cellular rearrangement in the bulk: by exchanging neighbors
cells restored their cuboidal shape. Our measurements remained
in the elastic regime: the stress free state of the tissue did
not change as evidenced by the diminishing rotation angle
upon turning the external magnetic fields off. The tissue
response, however, was viscoelastic: an initial elastic response
followed by an exponential creep. The characteristic time
scale of the creep was consistent with the time scale of the
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FIGURE 3 | Switching the direction of the external magnetic field rotates an aggregate of magnetic rods and the tissue environment within a HH 10 quail embryo. (A)

Tissue displacement, calculated using Particle Image Velocimetry (PIV). (B) A kymograph representation of the tissue movements reveals the extent of magnetic

field-induced rotation. (C) Kymograph of the corresponding immunofluorescence recording. Horizontal yellow lines indicate changes in magnetic field direction, timed

at 1 s intervals. The scale bar indicates a rotation of 20◦.

fast phase in (Forgacs et al., 1998). We suspect that the
viscous component arises by movements of cytoskeletal and
ECM components in the presence of drag forces from the
cytosol and the interstitial fluid inside and outside of the
cells, respectively.

Our measurements did not cover the plastic regime

as at longer time scales tissue deformations intrinsic to
developmental processes interfere with the analysis. The
microaspiration technique on Xenopus laevis embryos measure
material properties on larger scales, and found power law
stress relaxation (von Dassow et al., 2010), i.e., a remodeling
process fundamentally slower than those found in cell aggregates.
Interestingly the creep response was still linear: thus no evidence
for active mechanical feedback was observed.

Previous measurement on the chick embryo lateral plate
mesoderm found E = 1, 300 Pa for the Young’s modulus
when evaluated the tissue deformation caused by a cantilever

beam (Agero et al., 2010). This value, together with a Poisson
number of 0.2 (Wilhelm et al., 2002; Celedon et al., 2011) yields
a shear modulus µ1 + µ2 = E/2.4 ≈ 550 Pa. Thus, from our
measurements µ2 ≈ 250Pa and η = µ2τ ≈ 300 Pa s, a value
consistent with behavior observed in ECM hydrogels in vitro
(Massensini et al., 2015).

Since cantilever beam probing encompasses a larger area,
a more local measurement would be useful to determine
local material parameters (E and η) inside the embryo. This
could be potentially achieved with the same method presented
here, but using magnetic beads where magnetization can
be determined and small enough to inject. Further studies
can take this direction to explore additional local internal
tissue properties.

The importance of tissue material properties on stem cell
differentiation (Charrier et al., 2018) generated renewed interest
in the mechanical testing of the embryonic (D’Angelo et al.,
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FIGURE 4 | Quantitative measures of tissue rotation obtained from live recordings. (A) Average displacements relative to a reference frame. Shaded areas indicate the

time while the electromagnets were turned on (the two orthogonal electromagnet pairs are indicated with distinct colors, blue and yellow). (B) Angle of rotation

calculated from the vorticity (curl) of the displacement field. (C) Vorticity of the PIV displacement field, superimposed on a corresponding brightfield image. (D,E)

Viscoelastic creep of the embryonic tissue. Difference between the current angle and the estimated equilibrium value |φ(t)− φ∞|, as a function of time elapsed since

the switch in magnetic field direction. The distinct colors indicate four HH 10 embryos, each injected at the lateral plate mesoderm. The data set presented with black

symbols was obtained with a magnetic field of 21 mT (2.35 A coil current), while the other data sets were obtained using a magnetic field of 26 mT (3.4 A coil current).

The exponential decay on a linear axis (D) appear as straight lines on a logarithmic axis (E). The observed behavior is consistent with a Zener solid (inset D).
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2019) and organotypic tissues (Chevalier et al., 2016; Charrier
et al., 2018) and cells. We trust that the magnetic microrheology
method reported here will be a valuable tool to probe tissues
at the intermediate length scales, between that of cells and
whole organs.
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